Add like
Add dislike
Add to saved papers

Loss of EfnB1 in the osteogenic lineage compromises their capacity to support hematopoietic stem/progenitor cell maintenance.

Experimental Hematology 2018 October 14
The bone marrow stromal microenvironment contributes to the maintenance and function of hematopoietic stem/progenitor cells (HSPCs). The Eph receptor tyrosine kinase family members have been implicated in bone homeostasis and stromal support of HSPCs. The present study examined the influence of EfnB1-expressing osteogenic lineage on HSPC function. Mice with conditional deletion of EfnB1 in the osteogenic lineage (EfnB1OB -/- ), driven by the Osterix promoter, exhibited a reduced prevalence of osteogenic progenitors and osteoblasts, correlating to lower numbers of HSPCs compared with Osx:Cre mice. Long-term culture-initiating cell (LTC-IC) assays confirmed that the loss of EfnB1 within bone cells hindered HSPC function, with a significant reduction in colony formation in EfnB1OB -/- mice compared with Osx:Cre mice. Human studies confirmed that activation of EPHB2 on CD34+ HSPCs via EFNB1-Fc stimulation enhanced myeloid/erythroid colony formation, whereas functional blocking of either EPHB1 or EPHB2 inhibited the maintenance of LTC-ICs. Moreover, EFNB1 reverse signaling in human and mouse stromal cells was found to be required for the activation of the HSPC-promoting factor CXCL12. Collectively, the results of this study confirm that EfnB1 contributes to the stromal support of HSPC function and maintenance and may be an important factor in regulating the HSPC niche.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app