Add like
Add dislike
Add to saved papers

Type II restriction modification system in Ureaplasma parvum OMC-P162 strain.

Ureaplasma parvum serovar 3 strain, OMC-P162, was isolated from the human placenta of a preterm delivery at 26 weeks' gestation. In this study, we sequenced the complete genome of OMC-P162 and compared it with other serovar 3 strains isolated from patients with different clinical conditions. Ten unique genes in OMC-P162, five of which encoded for hypothetical proteins, were identified. Of these, genes UPV_229 and UPV_230 formed an operon whose open reading frames were predicted to code for a DNA methyltransferase and a hypothetical protein, respectively. DNA modification analysis of the OMC-P162 genome identified N4-methylcytosine (m4C) and N6-methyladenine (m6A), but not 5-methylocytosine (m5C). UPV230 recombinant protein displayed endonuclease activity and recognized the CATG sequence, resulting in a blunt cut between A and T. This restriction enzyme activity was identical to that of the cultivated OMC-P162 strain, suggesting that this restriction enzyme was naturally expressed in OMC-P162. We designated this enzyme as UpaP162. Treatment of pT7Blue plasmid with recombinant protein UPV229 completely blocked UpaP162 restriction enzyme activity. These results suggest that the UPV_229 and UPV_230 genes act as a type II restriction-modification system in Ureaplasma OMC-P162.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app