Add like
Add dislike
Add to saved papers

Aqueous electromigration of single-walled carbon nanotubes and co-electromigration with copper ions.

Nanoscale 2018 November 8
The electromigration behaviour of raw and acid purified single walled carbon nanotubes (SWCNTs) in dilute aqueous systems (0.0034 mg mL-1 ), in the absence of surfactant, with the addition of either 0.85 M acetic acid or 0.1 M CuSO4 , was evaluated using a 2-inch copper cathode and either a 2-inch copper or 0.5-inch platinum anode. The results showed that the electromigration of raw SWCNTs (with a high catalyst residue) in the presence of CuSO4 resulted in the formation of a Cu-SWCNT composite material at the cathode. In contrast, acid purified SWCNTs were observed to diffuse to a copper anode, creating fibrillated agglomerates with "rice-grain"-like morphologies. Upon acidification with acetic acid (or addition of CuSO4 ) the direction of electromigration reversed towards the cathode as a result of coordination of Cu2+ to the functional groups on the SWCNT overcoming the inherent negative charge of the acid purified SWCNTs. The result was the co-deposition of SWCNTs and Cu metal on the cathode. Addition of 0.005 M EDTA sequesters some of the Cu2+ and resulted in the separation of metal decorated SWCNTs to the cathode and un-decorated SWCNTs to the anode. The resulting SWCNT and Cu/SWCNT deposits were characterized by Raman spectroscopy, XPS, SEM, EDS, and TEM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app