Add like
Add dislike
Add to saved papers

Hesperetin mitigates acrolein-induced apoptosis in lung cells in vitro and in vivo.

OBJECTIVES: A number of studies have suggested that acrolein-induced lung injury and pulmonary diseases are associated with the depletion of antioxidants and the production of reactive oxygen species. Therefore, compounds that scavenge reactive oxygen species may exert protective effects against acrolein-induced apoptosis. Because hesperetin, a natural flavonoid, has been reported to have an antioxidant activity, we investigated the effect of hesperitin against acrolein-induced apoptosis of lung cells.

METHODS: We evaluated the protective role of hesperetin in acrolein-induced lung injury using Lewis lung carcinoma (LLC) cells and mice.

RESULTS: Upon exposure of LLC cells and mice to acrolein, hesperetin ameliorated the lung inbjury through attenuation of oxidative stress.

CONCLUSION: In the present report, we demonstrate that hesperetin exhibits a protective effect against acrolein-induced apoptosis of lung cells in both in vitro and in vivo models. Our study provides a useful model to investigate the potential application of hesperetin for the prevention of lung diseases associated with acrolein toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app