Add like
Add dislike
Add to saved papers

In Vitro Self-Renewal Assays for Brain Tumor Stem Cells.

Early development of human organisms relies on stem cells, a population of non-specialized cells that can divide symmetrically to give rise to two identical daughter cells, or divide asymmetrically to produce one identical daughter cell and another more specialized cell. The capacity to undergo cellular divisions while maintaining an undifferentiated state is termed self-renewal and is responsible for the maintenance of stem cell populations during development. In addition, self-renewal plays a crucial role in the homeostasis of developed organism through replacement of defective cells.Similar to their non-malignant counterparts, it has been postulated that tumor cells follow a differentiation hierarchy, with the least differentiated cells termed cancer stem cells (CSCs) at the apex. These tumor stem cells possess the ability to self-renew, have a higher capacity to initiate tumor growth when xenografted into an animal model, and can recapitulate the cell heterogeneity of the tumor they originate from. Hence, further investigation of mechanisms governing the self-renewal in cancer can lead to development of novel therapies targeting CSCs.In this chapter, we described the soft agar assay and the limiting dilution assay (LDA) as two easy-to-implement and inexpensive assays to measure the stemness properties of brain tumor stem cells (BTSCs). These techniques constitute useful tools for the preclinical evaluation of therapeutic strategies targeting BTSCs clonogenicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app