Add like
Add dislike
Add to saved papers

Effect of angiotensin II receptor blocker on TGF-β1, MMP-1, and collagen type I and type III concentration in New Zealand rabbit urethral stricture model.

Introduction: Urethral stricture is a disease with a high recurrence rate. Angiotensin II via AT1 receptor increases collagen formation through its effects on TGF-β1 and inhibition of collagenase activity. In this study, we evaluated the antifibrotic effect of angiotensin II receptor blocker on urethral stricture formation by creating a urethral stricture model in a male rabbit.

Material and methods: Thirty three male adult rabbits were separated into 3 groups (control, treatment, and sham). Group I consisted of 15 rabbits with urethral stricture that did not undergo any treatment, group II consisted of 15 rabbits with urethral stricture that were treated with a daily dose of 15 mg/kg losartan, given orally. Group III consisted of 3 rabbits with normal urethra and without any treatment. After 1, 2, and 4 weeks, the urethral tissues were collected, processed, and examined for TGF-β1, MMP-1, collagen type I, and collagen type III using enzyme-linked immunosorbent assay. Data were analyzed using 2-way analysis of variance using SPSS version 20.0.

Results: Urethral TGF-β1 concentration in the treatment group was significantly lower during the 2nd and 4th week of observation ( p <0.0001), MMP-1 was significantly higher in the 1st, 2nd, and 4th week of observation ( p <0.0001), collagen type I was significantly lower during the 2nd ( p =0.001) and 4th week ( p <0.0001), and collagen type III concentration was significantly lower in the 2nd and 4th week of observation ( p <0.0001).

Conclusion: Angiotensin II receptor blocker could limit the progression of urethral stricture. The mechanism may be related to the AT1 blockage that leads to a decrease in TGF-β1 concentration, eventually resulting in lower collagen concentration due to increased MMP-1 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app