Add like
Add dislike
Add to saved papers

Serological biomarkers associate ultrasound characteristics of steatohepatitis in mice with liver cancer.

Background: Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of lesions ranging from steatosis to a complex pattern, nonalcoholic steatohepatitis (NASH). Ultrasonography provides important information on hepatic architecture for steatosis. NASH patients have an increased risk of hepatocellular carcinoma (HCC). Early detection of NASH is critical for clinicians to advise on necessary treatments to prevent the onset of HCC.

Methods: We established a NASH-HCC mouse model using diethylnitrosamine as a carcinogen to induce HCC and a high-fat diet to induce metabolic disorders. Characteristics of ultrasound imaging and potential serum biomarkers were investigated for detection of steatohepatitis and HCC in mice.

Results: The data suggested that ultrasound imaging of hyperechoic masses was potentially linked to the gross finding of HCC nodules, which was further confirmed by the histology. Positive correlation between serum fibroblast growth factor 15 and acoustic attenuation coefficient was found in mice with steatohepatitis. Combined with the serum markers, the increased acoustic attenuation coefficient could be a useful diagnostic parameter of ultrasound imaging for NASH detection.

Conclusions: This study demonstrates that a combination of serum fibroblast growth factor 15 and acoustic attenuation coefficient could be a sensitive marker for steatohepatitis and to predict carcinogenic initiation and progression of HCC in mice. These results might help for the design of ultrasound and surrogate markers in screening NASH patients who could be at risk of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app