Add like
Add dislike
Add to saved papers

Diffusely adherent Escherichia coli strains isolated from healthy carriers suppress cytokine secretions of epithelial cells stimulated by inflammatory substances.

Infection and Immunity 2018 October 16
Diarrheagenicity of diffusely adherent Escherichia coli (DAEC) remains controversial. Previously, we found that motile DAEC strains isolated from diarrheal patients induced high levels of interleukin 8 (IL-8) secretion via Toll-like receptor 5 (TLR5). However, DAEC strains from healthy carriers hardly induced IL-8 secretion, irrespective of their possessing flagella. In this study, we demonstrated that SK1144, a DAEC strain from a healthy carrier, suppressed IL-8 and IL-6 secretion from human epithelial cell lines. Suppression of IL-8 in human embryonic kidney (HEK293) cells that were transformed to express TLR5 was observed not only upon inflammatory stimulation by flagellin but also in response to tumor necrosis factor-alpha (TNF-α) and phorbol myristate acetate (PMA), despite the fact that the TNF-α- and PMA-induced inflammatory pathways reportedly are not TLR5-mediated. SK1144 neither decreased IL-8 transcript accumulation nor increased intracellular retention of IL-8. No suppression was observed when the bacteria were cultured in Transwell cups above the epithelial cells; however, a non-adherent bacterial mutant (lacking the afimbrial adhesin gene) still inhibited IL-8 secretion. Direct contact between the bacteria and epithelial cells was necessary, but diffuse adhesion was dispensable for the inhibitory effects. Infection in the presence of chloramphenicol did not suppress cytokine release by the epithelial cells, suggesting that suppression depended on effectors synthesized de novo Inflammatory suppression was attenuated with infection by a bacterial mutant deleted for hcp (encoding a component of a type-VI secretion system). In conclusion, DAEC strains from healthy carriers impede epithelial cell cytokine secretion, possibly by interfering with translation via the type-VI secretion system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app