Case Reports
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy.

BACKGROUND: Early infantile epileptic encephalopathies are severe disorders consisting of early-onset refractory seizures accompanied often by significant developmental delay. The increasing availability of next-generation sequencing has facilitated the recognition of single gene mutations as an underlying aetiology of some forms of early infantile epileptic encephalopathies.

OBJECTIVES: This study was designed to identify candidate genes as a potential cause of early infantile epileptic encephalopathy, and then to provide genetic and functional evidence supporting patient variants as causative.

METHODS: We used whole exome sequencing to identify candidate genes. To model the disease and assess the functional effects of patient variants on candidate protein function, we used in vivo CRISPR/Cas9-mediated genome editing and protein overexpression in frog tadpoles.

RESULTS: We identified novel de novo variants in neuronal differentiation factor 2 ( NEUROD2 ) in two unrelated children with early infantile epileptic encephalopathy. Depleting neurod2 with CRISPR/Cas9-mediated genome editing induced spontaneous seizures in tadpoles, mimicking the patients' condition. Overexpression of wild-type NEUROD2 induced ectopic neurons in tadpoles; however, patient variants were markedly less effective, suggesting that both variants are dysfunctional and likely pathogenic.

CONCLUSION: This study provides clinical and functional support for NEUROD2 variants as a cause of early infantile epileptic encephalopathy, the first evidence of human disease caused by NEUROD2 variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app