JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In operando plasmonic monitoring of electrochemical evolution of lithium metal.

The recent renaissance of lithium metal batteries as promising energy storage devices calls for in operando monitoring and control of electrochemical evolution of lithium metal morphologies. While the development of plasmonics has led to significant advancement in real-time and ultrasensitive chemical and biological sensing and surface-enhanced spectroscopies, alkali metals featured by ideal free electron gas models have long been regarded as promising plasmonic materials but seldom been explored due to their high chemical reactivity. Here, we demonstrate the in operando plasmonic monitoring of the electrochemical evolution of lithium metal during battery cycling by taking advantage of selective electrochemical deposition. The relationships between the evolving morphologies of lithium metal and in operando optical spectra are established both numerically and experimentally: Ordered growth of lithium particles shows clear size-dependent reflective dips due to hybrid surface plasmon resonances, while the formation of undesirable disordered lithium dendrites exhibits a flat spectroscopic profile with pure suppression in reflection intensity. Under the in operando plasmonic monitoring enabled by the microscopic morphology of metal, the differences of lithium evolutionary behaviors with different electrolytes can be conveniently identified without destruction. At the intersection of energy storage and plasmonics, it is expected that the ability to actively control and in operando plasmonically monitor electrochemical evolution of lithium metal can provide a promising platform for investigating lithium metal behavior during electrochemical cycling under various working conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app