Add like
Add dislike
Add to saved papers

MicroRNA-206 Downregulates Connexin43 in Cardiomyocytes to Induce Cardiac Arrhythmias in a Transgenic Mouse Model.

BACKGROUND: MicroRNAs (miRNAs) are critical modulators of various physiological and pathological processes, but their role in cardiac arrhythmias remains yet to be completely understood. Connexin43 (Cx43) is an important cardiac gap junction protein and a potential target of miR-206, and downregulation of Cx43 induces ventricular tachyarrhythmias.

METHODS: We investigated the effects of miR-206 overexpression on the adult mouse heart and in cardiac arrhythmias. Luciferase activity assay was employed to validate Cx43 as a direct target of miR-206. Expression of Cx43 was measured in cardiac muscle cell line HL-1 securely expressing miR-206. An inducible miR-206 overexpression mouse model was established to evaluate the in vivo effect of miR-206 on Cx43 expression and cardiac rhythm.

RESULTS: MiR-206 directly recognised 3'-untranslated region of Cx43 mRNA to inhibit its expression in HL-1 cells. Induction of miR-206 in the adult mouse heart suppressed Cx43 expression, particularly in the atria and ventricle. Importantly, miR-206 overexpression also induced abnormal heart-rate and PR interval, and shortened life-span in the experimental mice.

CONCLUSIONS: In cardiomyocytes, miR-206 is a upstream regulator of Cx43, and its overexpression downregulates Cx43 to induce abnormal heart-rate and PR interval.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app