Add like
Add dislike
Add to saved papers

Physical and rheological properties of xanthan gum agglomerated in fluidized bed: Effect of HPMC as a binder.

Physical and rheological properties of agglomerated xanthan gum (XG), commonly used as a food thickener for the management of the patients with dysphagia (swallowing difficulty), were investigated at different concentrations (0, 2, 4, and 6% w/w) of hydroxypropyl methylcellulose (HPMC) as a binder in the fluidized bed agglomeration process. Flow characteristics of agglomerated XG powder were evaluated using Carr index (CI) and Hausner ratio (HR). The agglomerated XG powders obtained by HPMC binder exhibited a better flowability and higher porosity than the agglomerated powder without binder due to the size enlargement of XG powder. Dynamic moduli (G' and G") of agglomerated XG powders at 2% and 4% HPMC were significantly higher than those of other powders. The tan δ values of agglomerated powders with HPMC binder were much lower than that of an agglomerated powder without HPMC, indicating that their elastic properties were enhanced because of the addition of HPMC binder. Results suggest that the use of HPMC in agglomeration process could considerably enhance the flow characteristics and rheological properties of XG powder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app