Add like
Add dislike
Add to saved papers

Beclin1 decreases the RIPA-insoluble fraction of amyotrophic lateral sclerosis-linked SOD1 mutant via autophagy.

Neuroscience Letters 2018 October 13
Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), are characterised by the intracellular appearance of protein aggregates or insoluble materials. Accelerated removal of related toxic proteins might be beneficial for these diseases. Here we describe an inducible role of Beclin1, an essential regulator for autophagy, in degradation of the familial ALS-linked Cu/Zn superoxide dismutase 1 (SOD1) mutant. We confirmed that the SOD1 mutant exhibited an increased RIPA (radioimmune precipitation assay buffer, containing NP40 and sodium deoxycholate)-insolubility compared with SOD1 wild-type (WT). Also, the insoluble fraction formed by SOD1 mutant was greatly reduced by coexpressing Beclin1 in both neuronal and non-neuronal cell lines. Pharmacological inhibition of autophagy diminished the effect of Beclin1 and resulted in an accumulation of insoluble SOD1. Our results support the role of Beclin1 in the involvement of autophagic degradation of SOD1 mutant. We propose Beclin1 enhances autophagy and presents a possible therapeutic strategy for familial ALS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app