Add like
Add dislike
Add to saved papers

Effects of the tumor suppressor PTEN on biological behaviors of activated pancreatic stellate cells in pancreatic fibrosis.

Pancreatic stellate cells (PSCs), when activated, are characterized by proliferation and collagen synthesis, and contribute to extracellular matrix deposition in pancreatic fibrosis. Concomitantly, fibrosis is linked with the loss of PTEN (phosphatase and tensin homolog) protein in several organs. This study investigated the association between PTEN protein levels and the activated or apoptotic status of PSCs in a rat model of chronic pancreatitis. In addition, the activation status and biological behaviors of culture-activated PSCs were analyzed after lentiviral transfection with wildtype or mutant (G129E) PTEN for upregulation, or PTEN short hairpin RNA for downregulation, of PTEN. In vivo, PTEN levels gradually decreased during pancreatic fibrosis, which positively correlated with apoptosis of activated PSCs, but negatively with PSC activation. In vitro, activated PSCs with wildtype PTEN showed less proliferation, migration, and collagen synthesis compared with control PSCs, and greater numbers were apoptotic; activated PSCs with mutant PTEN showed similar, but weaker, effects. Furthermore, AKT and FAK/ERK signaling was involved in this process. In summary, activated PSCs during pancreatic fibrosis in vivo have lower levels of PTEN. In vitro, PTEN appears to prevent PSCs from further activation and promotes apoptosis through regulation of the AKT and FAK/ERK pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app