Add like
Add dislike
Add to saved papers

Effect of temperature and ligand protonation on the electronic ground state in Cu(ii) polymers having unusual secondary interactions: a magnetic and catechol oxidase study.

Two new copper(ii) polymeric complexes, {[Cu(HPymat)(H2O)](NO3)}n (1) and [Cu2(Pymat)2(H2O)3]n (2), have been synthesized using the Schiff base ligand H2Pymat [H2Pymat = (E)-2-(1-(pyridin-2-yl)-methyleneamino)terephthalic acid]. Complex 1 is a cationic 1D polymer, whereas complex 2 is a two dimensional polymer. Both complexes were crystallographically, spectroscopically and magnetically characterized. Theoretical studies were performed and the catecholase activity of the complexes was also examined. Complex 1 is a ferromagnetically coupled complex with J = 2.8 cm-1 and 2 shows antiferromagnetic coupling with J = -1.6 cm-1. Both complexes show notable features in the EPR study. They show rhombic spectra at 77 K in the solid state, but by varying the temperature or solvents the nature of the spectra can be changed or inverted. This behaviour indicates a change of the ground state from dx2-y2 to dz2 orbitals. Theoretical calculations of 1 focus on the evaluation and characterization of interesting anion-π-anion assemblies that are formed in the solid state. In 2 we have analysed the unconventional chelate ringchelate ring π-stacking interactions that govern its solid state architecture. Both complexes act as functional models and show catechol oxidase activity with a kcat value of the order of 103 h-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app