Add like
Add dislike
Add to saved papers

Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications.

Long-wavelength identification of microcalcifications in breast cancer tissue is demonstrated using a novel upconversion raster scanning microscope. The system consists of quantum cascade lasers (QCL) for illumination and an upconversion system for efficient, high-speed detection using a silicon detector. Absorbance spectra and images of regions of ductal carcinoma in situ (DCIS) from the breast have been acquired using both upconversion and Fourier-transform infrared (FTIR) systems. The spectral images are compared and good agreement is found between the upconversion and the FTIR systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app