Add like
Add dislike
Add to saved papers

Effect of the pH on the lipid oxidation and polyphenols of soybean oil-in-water emulsion with added peppermint ( Mentha piperita ) extract in the presence and absence of iron.

This study evaluated the pH effect on the lipid oxidation and polyphenols of the emulsions consisting of soybean oil, citric acid buffer (pH 2.6, 4.0, or 6.0), and peppermint ( Mentha piperita ) extract (400 mg/kg), with/without FeSO4 . The emulsions in tightly-sealed bottles were placed at 25 °C in the dark, and lipid oxidation and polyphenol contents and composition were determined. The lipid oxidation was high in the emulsions at pH 4.0 in the absence of iron, however, iron addition made them more stable than the emulsions at pH 2.6 or 6.0. Total polyphenols were remained at the lowest content during oxidation in the emulsions at pH 4.0, and iron reduced and decelerated polyphenol degradation. The results strongly suggest that polyphenols contributed to decreased lipid oxidation of the emulsion via radical scavenging and iron-chelation, and rosmarinic acid along with catechin, caffeic acid, and luteolin were key polyphenols as radical scavengers in the extract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app