Add like
Add dislike
Add to saved papers

3,3'-Diindolylmethane Encapsulated Chitosan Nanoparticles Accelerates Inflammatory Markers, ER/PR, Glycoprotein and Mast Cells Population During Chemical Carcinogen Induced Mammary Cancer in Rats.

The present study aimed to investigate the effect of 3,3'-diindolylmethane (DIM) on inflammatory markers, estrogen receptors (ER), progesterone receptors (PR), level of glycoprotein and the mast cell population in 7,12-dimethylbenz (a) anthracene (DMBA) 25 mg/kg b.wt. induced rat mammary carcinogenesis. After 8 weeks of tumor formation, rats had access to an oral administrated with DIM 10 mg/kg b.wt. and DIM@CS-NP 0.5 mg/kg body weight respectively for 8 weeks. The oral administration of DIM@CS-NP 0.5 mg/kg b.wt. suppressed the Cox-2, NF-κB and TNF-α protein expression on DMBA induced rats compared to DIM 10 mg/kg b.wt. The ER/PR levels were increased on DMBA induced rats, treated with DIM@CS-NP 0.5 mg/kg b.wt. reduced ER/PR level as well as glycoprotein and mast cell population than DIM 10 mg/kg b.wt. The result shows that, DIM@CS-NP 0.5 mg/kg b.wt. has the potentially inhibit abnormal levels of inflammatory markers, ER, PR, levels of glycoprotein and mast cell population compared to DIM 10 mg/kg b.wt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app