English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Molecular biology of castration resistant prostate cancer.]

OBJECTIVES: Castration resistant prostate cancer (CRPC) is an heterogeneous disease the molecular basis of which we are starting to know in depth. Currently, there are various pathways and targets under study, and probably many others to be characterized. In this paper, we review the most recent knowledge concerning the molecular biology of CRPC with a special focus on the therapeutic application of this knowledge.

METHODS: We performed a bibliographic review using PUBMED as the search engine, including the following terms: "Castration resistant prostate cancer", "genomics", "molecular biology", "AR", "WNT", "mTOR", "PTEN", "cell-cycle", "DNA damage repair gene"and "chromatin modifier genes".

RESULTS: CRPC has a high load of genetic alterations, probably derived from therapeutic pressure. The most frequent alterations involve the androgen receptor (RA) [60-70%] and the PI3K- AKT-mTOR [40-60%], even though other relevant pathways alterations have been identified such as those relative to cellular cycle [25%], DNA lesion repair genes [20%] and other pathway like WNT-βcatenin [15-22%]. The knowledge of these pathways is helping as a base for development of new therapeutic targets with promising results and multiple ongoing studies.

CONCLUSIONS: Over the last decade, the progress in the knowledge of the molecular bases of CRPC has been very relevant. Even though AR alterations are the most frequent and best characterized, anomalies in other pathways have been also identified as important in the biology of CRPC and derived a notable therapeutic development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app