Add like
Add dislike
Add to saved papers

Guided Cell Attachment via Aligned Electrospinning of Glycopolymers.

The creation of biomaterials with aligned fibers offers broad applications in tissue regeneration, guiding cell organization and physiological cues, and providing appropriate mechanical properties for many biomedical applications. Herein, for the first time, highly aligned electrospun membranes are designed and developed using glycopolymers. The membranes retain the strong mechanical properties of polycaprolactone, and fiber alignment facilitates the creation of anisotropic mechanical properties, enabling failure stress to be manipulated by an order of magnitude relative to randomly ordered fibers. Biocompatibility and cell attachment in these materials are characterized using tenocytes as a cell model. Both random and aligned fiber glycopolymers show promising biocompatibility, but aligned glycopolymer fibers additionally offer patterning to guide cell organization. These materials potentially provide a novel platform for tissue regeneration studies, demonstrating that the sugar-lectin interaction can produce materials capable of managing cell guidance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app