Add like
Add dislike
Add to saved papers

Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites.

Carbohydrate Polymers 2019 January 2
Bio-composites made of polylactic acid (PLA) matrix reinforced with cellulose fibers (CF) were prepared using a twin-screw extruder and injection molding. The CFs were coated with epoxy-based surface treatment agents. Accelerated degradation tests were carried out on these PLA/CF composites at high temperatures (60 °C) or at constant temperature and constant humidity (60 °C/70% RH), and the higher-order structure changes and degradation characteristics of the molded products were evaluated. In the accelerated degradation test at 60 °C, the thermal and mechanical properties of PLA/CF composites showed no degradation, whereas at 60 °C and 70% RH, the melting point decreased ca. 25 °C and the storage modulus with increasing elapsed time decreased more than 50%. However, the thermal and mechanical properties of the PLA/CF composites treated with low-molecular-weight epoxy did not degrade, even at the high humidity of 70% RH. These results strongly suggest that the surface treatment agent not only improves interfacial adhesion between CF and PLA but also plays an important role in inhibiting degradation of the PLA matrix.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app