Add like
Add dislike
Add to saved papers

Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles.

Carbohydrate Polymers 2019 January 2
Silver nanoparticles (AgNPs) have been intensively investigated in virtue of their optical and antimicrobial properties, although their applications have been limited due to inherent toxicity and to the need of employing harsh chemical reagents for the synthesis. In this work, ulvan, a sulfated polysaccharide extracted from green algae belonging to Ulva armoricana sp., was for the first time investigated and identified as reducing and stabilizing agent for AgNPs synthesis by using milder conditions than those conventionally adopted by chemical methods. The synthesized AgNPs were thoroughly characterized to highlight the structure and the role exerted by ulvan in their synthesis and stabilization. The formation of AgNPs stabilized by a thick ulvan shell was assessed by UV-vis, XRD, TEM, DLS and zeta potential analyses. The developed Ulvan based AgNps showed an IC50 in the range of 10 μg/ml in Balb/3T3 mouse embryo fibroblasts and antimicrobial activity toward both Gram + and Gram - bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app