Add like
Add dislike
Add to saved papers

Preparation and characterization of yeast cell wall beta-glucan encapsulated humic acid nanoparticles as an enhanced aflatoxin B 1 binder.

Carbohydrate Polymers 2019 January 2
This study aimed to assess the effect of encapsulating humic acid inside yeast cell walls (YCW) to detoxify AFB1 in in vitro gastrointestinal models. Glucan Mannan Lipid Particles (GMLPs) from Saccharomyces cerevisiae cell walls showed the highest AFB1 adsorption in simulated gastric fluid (SGF) after 10 min, and in simulated intestinal fluid (SIF) after 1 h. GMLPs are hollow 3-4 micron porous microspheres that provide an efficient system for the synthesis and encapsulation of AFB1 -absorbing nanoparticles (NPs). Humic acid nanoparticles (HA-NPs) were synthesized within the GMLP cavity by complexation with ferric chloride. Encapsulating HA-NPs in GMLPs increased HA-NP stability in SIF. The hybrid GMLP HA-NP formulation synergistically enhanced AFB1 binding compared to individual GMLP and HA components in SGF and in SIF. Cytotoxicity on a murine macrophage cell line demonstrated that GMLP HA-NP-AFB1 complexes were stable in both SGF and SIF, detoxified AFB1 and are suitable for in vivo testing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app