JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Polymeric Lipid Hybrid Nanoparticles: Properties and Therapeutic Applications.

Some of the criteria for selection of a viable nanocarrier formulation currently being explored are the development of a site-specific and bioavailable formulation. Although the literature reports a variety of techniques for fabrication of nanocarrier systems, their stability and scale-up issues are a concern for their prominence in the pharmaceutical industry. The other widely recognized drawbacks of nanoparticulates, i.e., polymeric nanoparticles and lipid vesicular nanoparticles (liposomes), are low circulatory half-lives due to reticuloendothelial system (RES) uptake and leaky architecture leading to burst kinetics. Polymeric lipid hybrid nanoparticles (PLHNs) or lipomers are the recent advancement in nanodrug delivery systems composed of a polymeric core and lipid shell which imparts physicochemical stability and biocompatibility to the nanoparticles. The lipomers are a blend of positive attributes of both liposomes and polymeric nanoparticles wherein their individual innate flaws are negated. An extensive study of PLHN was engineered using single/two or multiple methods carried out for encapsulation efficiency, physicochemical properties, and stability. The influence of shape and composition of PLHN has also shown promising results in terms of reticuloendothelial uptake. These PLHNs have shown to hold a promising place in designing drug delivery systems for the treatment of cancer and infectious diseases as well as for theranostic purposes. The present review article encompasses various types of PLHNs, their physicochemical characteristics, and their applications as future perspectives in strategizing drug delivery to their desired sites of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app