Add like
Add dislike
Add to saved papers

Identification of a crucial amino acid responsible for the loss of specifying FGFR1-KLB affinity of the iodinated FGF21.

Previous studies suggest that specific binding to the complex consisting of fibroblast growth factor receptor-1 (FGFR1) and the coreceptor beta-Klotho (KLB) is the premise for human FGF19 and FGF21 activating the downstream signaling cascades, and regulating the metabolic homeostasis. However, it was found that human FGF21 loses its ability to bind to FGFR1-KLB after iodination with Na125 I and chloramine T, whereas human FGF19 retained its affinity for FGFR1-KLB even after iodination. The molecular mechanisms underlying these differences remained elusive. In this study, we first demonstrated that an intramolecular disulfide bond was formed between cysteine-102 and cysteine-121 in FGF21, implying that the oxidation of the cysteine to cysteic acid, which may interfere with the active conformation of FGF21, did not occur during the iodination procedures, and thus ruled out the possibility of the two conserved cysteine residues mediating the loss of FGF21 binding affinity to FGFR1-KLB upon iodination. Site-directed mutagenesis and molecular modeling were further applied to determine the residue(s) responsible for the loss of FGFR1-KLB affinity. The results showed that mutation of a single tyrosine-207, but not the other five tyrosine residues in FGF21, to a phenylalanine retained the FGFR1-KLB affinity of FGF21 even after iodination, whereas replacing the corresponding phenylalanine residue with tyrosine in FGF19 did not alter its binding affinity to FGFR1-KLB, but decreased the receptor binding ability of the iodinated protein, suggesting that tyrosine-207 is the crucial amino acid responsible for the loss of specifying FGFR1-KLB affinity of the iodinated FGF21.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app