Add like
Add dislike
Add to saved papers

Influence of oxidative damage to proteins on meat tenderness using a proteomics approach.

Meat Science 2019 Februrary
The objective of this study was to evaluate the association between oxidative damage to proteins (represented by protein carbonylation) and beef tenderness. Three experimental groups were selected by shear force (SF): tender (38.2 ± 2.9 N), intermediate (51.9 ± 6.8 N), and tough meat (74.5 ± 7.8 N). Two-dimensional electrophoresis with hydrazide fluorophore derivatization was used. The structural proteins actin (ACTA1), myosin (MYL1 and MYL3), desmin (DES) and troponin T (TNNT1 and TNNT3), antioxidant proteins (PRDX1, PRDX2 and PARK7) and heat shock proteins (HSPB1, CRYAB and HSPB6) showed an increase in the oxidative damage in tender meat when compared to the intermediate and tough meat (P < .05). Decrease in oxidative damage of the metabolic enzymes (TPI1, GAPDH and ENO3) were observed in tender meat group (P < .05). The present results suggest that oxidation act on the proteins of different metabolic pathways and consequently affect meat tenderness in Angus crossbred cattle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app