Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Amino acid substitution in the C-terminal domain of collagen XVII reduces laminin-332 interaction causing mild skin fragility with atrophic scarring.

The behavior of a cell depends on how its adhesion molecules interact with the cellular microenvironment. Hemidesmosomal collagen XVII essentially contributes to cell adhesion and modulates keratinocyte directionality and proliferation during skin regeneration, however only little is known about the involved interactions. Here, we used keratinocytes from patients with junctional epidermolysis bullosa with late onset, which exclusively produce a collagen XVII mutant with the p.R1303Q mutation within its extracellular C-terminus. Although this mutant was normally expressed and targeted to the membrane and the expression of integrins α3β1, α6β4 and of laminin-332 was unchanged, the keratinocytes were less adhesive, showed migratory defects and decreased clonogenic growth. Since the p.R1303Q substitution is located within the predicted laminin-332 binding site of collagen XVII, we anticipated an altered collagen XVII-laminin-332 interaction. Indeed, the pR1303Q collagen XVII ectodomain showed decreased binding capability to laminin-332 and was less co-localized with pericellular laminin-332 molecules in cell culture. Thus, aberrant collagen XVII-laminin-332 interaction results in reduced cell adhesion, destabilized cell motility and decreased clonogenicity, which in turn lead to blister formation, delayed wound healing and skin atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app