Add like
Add dislike
Add to saved papers

A positive role of Sin3A in regulating Notch signaling during Drosophila wing development.

Cellular Signalling 2018 October 13
Notch is a transmembrane receptor that mediates intercellular signaling through a conserved signaling cascade in all animal species. Transcriptional and posttranscriptional regulation of Notch receptor are important for maintaining Notch signaling activity. Here, we show that depletion of Drosophila Sin3A leads to loss of the adult wing margin and downregulation of Notch target gene expression in the developing wing disc. Sin3A regulates the Notch pathway downstream of Delta and upstream of Notch activation. The role of Sin3A in the Notch pathway is partly mediated by its ability to modulate Notch receptor transcription. Furthermore, the transcriptional activation of Notch receptor is autoregulated by Notch itself. We also provide evidence that Sin3A is required for Notch activation mediated Notch transcription. Together, our data demonstrate that Sin3A activates Notch signaling by promoting Notch transcription and reveal a previously unknown autoregulatory mechanism for Notch signaling activation during Drosophila wing development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app