Add like
Add dislike
Add to saved papers

Microtubule buckling in an elastic matrix with quenched disorder.

The intracellular elastic matrix has been recognized as an important factor to stabilize microtubules and increase their critical buckling force P c in vivo . This phenomenon was qualitatively explained by the Winkler model, which investigated the buckling of a filament embedded in a homogeneous elastic medium. However, the assumption of homogeneity of the matrix in Winkler's, and other advanced models, is unrealistic inside cells, where the local environment is highly variable along the filament. Considering this to be a quenched-disorder system, we use a Poisson distribution for confinements and apply the replica technique combined with the Gaussian variational method to study the buckling of a long filament. The results show two types of filament bucklings: one corresponding to the first-order, and the other to a continuous second-order phase transition. The critical point, i.e., the switch from first- to second-order buckling transition, is induced by the increase in disorder strength. We also discover that this random disorder of the elastic environment destabilizes the filament by decreasing P c from the Winkler result and the matrix with stronger mean elasticity has a stronger role of disorder (inhomogeneity). For microtubules in vivo , buckling follows the discontinuous first-order transition, with P c reduced to the fraction between 0.9 and 0.75 of the Winkler prediction for the homogeneous elastic matrix. We also show that disorder can affect the force-displacement relationship at non-zero temperature, while at zero temperature this effect vanishes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app