Add like
Add dislike
Add to saved papers

Vacuum ultraviolet excited state dynamics of the smallest ring, cyclopropane. I. A reinterpretation of the electronic spectrum and the effect of intensity borrowing.

Cyclopropane, the smallest organic ring compound, exhibits complex spectroscopy and excited state dynamics. In Paper I, we reinterpret the vacuum ultraviolet (VUV) electronic absorption spectrum of cyclopropane via ab initio computation. The first two bands in the VUV spectrum are simulated using wavepacket propagations employing the multiconfigurational time-dependent Hartee method and a newly parameterized linear vibronic coupling Hamiltonian. The parameters of the model Hamiltonian are obtained directly from high level multireference configuration interaction calculations. An analysis of the results, with an emphasis on previously neglected vibronic coupling effects, reveals that these vibronic coupling terms must be included in order to account for strong intensity borrowing effects. This treatment dramatically changes the assignment of much of the VUV spectrum, with intensity borrowing by the optically dark A 2 ' ( σ 3 p x /3 p y ) and A 1 ' ( σ 3 p x /3 p y ) states from the E '( σ 3 p x /3 p y ) state being found to give rise to almost all the spectral intensities below 8 eV. This is in stark contrast to previous studies, which attributed the first two bands to transitions to the E '( σ 3 p x /3 p y ) state. This highlights the limitations of assigning spectral features based solely on calculated electronic excitation energies and oscillator strengths. Furthermore, we address the significant but infrequently discussed difficulties involved in determining the electronic character of a wavepacket produced in the pump step of ultrafast pump-probe experiments for systems exhibiting strong vibronic coupling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app