Add like
Add dislike
Add to saved papers

NMR relaxation in porous materials at zero and ultralow magnetic fields.

NMR detection in the ultralow-field regime (below 10 μT) was used to measure the nuclear spin relaxation rates of liquids imbibed into silica pellets with mean pore diameters in the 10-50 nm range. Heptane, formic acid and acetic acid were studied and relaxation rate data were compared with a conventional field-cycling NMR technique. Detection of 1 H-13 C spin coupling NMR signals at zero field (∼0.1 nT) allowed spectroscopic identification of molecules inside the porous material and unambiguous measurements of the chemistry-specific relaxation rates in liquid mixtures. In the case of molecules that contain 1 H and 13 C, spin-singlet state relaxation can provide additional information about the dynamics. Applications and future improvements to the methodology are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app