JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitochondrial OXPHOS genes provides insights into genetics basis of hypoxia adaptation in anchialine cave shrimps.

Genes & Genomics 2018 November
Cave shrimps from the genera Typhlatya, Stygiocaris and Typhlopatsa (TST complex) comprises twenty cave-adapted taxa, which mainly occur in the anchialine environment. Anchialine habitats may undergo drastic environmental fluctuations, including spatial and temporal changes in salinity, temperature, and dissolved oxygen content. Previous studies of crustaceans from anchialine caves suggest that they have possessed morphological, behavioral, and physiological adaptations to cope with the extreme conditions, similar to other cave-dwelling crustaceans. However, the genetic basis has not been thoroughly explored in crustaceans from anchialine habitats, which can experience hypoxic regimes. To test whether the TST shrimp-complex hypoxia adaptations matched adaptive evolution of mitochondrial OXPHOS genes. The 13 OXPHOS genes from mitochondrial genomes of 98 shrimps and 1 outgroup were examined. For each of these genes was investigated and compared to orthologous sequences using both gene (i.e. branch-site and Datamonkey) and protein (i.e. TreeSAAP) level approaches. Positive selection was detected in 11 of the 13 candidate genes, and the radical amino acid changes sites scattered throughout the entire TST complex phylogeny. Additionally, a series of parallel/convergent amino acid substitutions were identified in mitochondrial OXPHOS genes of TST complex shrimps, which reflect functional convergence or similar genetic mechanisms of cave adaptation. The extensive occurrence of positive selection is suggestive of their essential role in adaptation to hypoxic anchialine environment, and further implying that TST complex shrimps might have acquired a finely capacity for energy metabolism. These results provided some new insights into the genetic basis of anchialine hypoxia adaptation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app