Add like
Add dislike
Add to saved papers

CH 3 NH 3 PbX 3 (X = I, Br) encapsulated in silicon carbide/carbon nanotube as advanced diodes.

Scientific Reports 2018 October 13
We employ first-principles density functional theory (DFT) calculations to study CH3 NH3 PbX3 (X = I, Br) and its encapsulation into the silicon carbide nanotube and carbon nanotube (CNT). Our results indicate that these devices show diode behaviors which act on negative bias voltage but do not work under positive voltage. When they are encapsulated into SiC nanotube and CNT, their electronic properties would be changed, especially, electric currents mainly exist at positive bias region. Corresponding transmission spectra and density of states are provided to interpret the transport mechanism of the CH3 NH3 PbX3 (X = I, Br) as a diode. These findings open a new door to microelectronics and integrated circuit components, providing theoretical foundation for innovation of the new generation of electronic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app