Add like
Add dislike
Add to saved papers

Deletion of ATM in tumor but not endothelial cells improves radiation response in a primary mouse model of lung adenocarcinoma.

Cancer Research 2018 October 13
Stereotactic body radiation therapy is utilized to treat lung cancer. The mechanism of tumor response to high dose RT (HDRT) is controversial, with competing hypotheses of increased direct tumor cell killing vs indirect effects on stroma including endothelial cells. Here we used dual recombinase technology in a primary murine lung cancer model to test whether tumor cells or endothelial cells are critical HDRT targets. Lenti-Cre deleted one or two copies of Atm (KPAFL/+ or KPAFL/FL), whereas adeno-FlpO infected mice expressed Cre in endothelial cells to delete one or both copies of Atm (KPVAFL/+ or KPVAFL/FL) to modify tumor cell or endothelial cell radiosensitivity, respectively. Deletion of Atm in either tumor cells or endothelial cells had noimpact on tumor growth in the absence of radiation. Despite increased endothelial cell death in KPVAFL/FL mice following irradiation, tumor growth delay was not significantly increased. In contrast, a prolonged tumor growth delay was apparent in KPAFL/FL mice. Primary tumor cell lines lacking Atm expression also demonstrated enhanced radiosensitivity as determined via a clonogenic survival assay. These findings indicate that tumor cells, rather than endothelial cells, are critical targets of HDRT in primary murine lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app