Add like
Add dislike
Add to saved papers

Analysis of Human Body Shadowing Effect on Wireless Sensor Networks Operating in the 2.4 GHz Band.

Sensors 2018 October 12
Miniaturized wireless sensors are designed to run on limited power resources, requiring minimization of transmit power and lowering of the fade margin in the link budget. One factor that has an important impact on wireless sensor network design is path loss between the transmitter and the receiver. This paper presents an analysis of the influence of human bodies on path loss in the 2.4 GHz band, which is commonly used for wireless sensor networks. The effect of body shadowing was first analyzed in full wave computer simulations using the finite-difference time-domain method. Due to the high numerical burden, the simulations were limited to only a small region around the human body. To analyze the performance of networks in larger indoor environments, a human body model is proposed that can be used for simulations with a ray-based computer program. The proposed model of human body is the main contribution of this paper. It was used to analyze the body shadowing effect in a typical indoor environment. The results were found to be in good agreement with measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app