Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy.

Biomaterials 2019 January
Mitochondria and cell membrane play important roles in maintaining cellular activity and stability. Here, a single-agent self-delivery chimeric peptide based nanoparticle (designated as M-ChiP) was developed for mitochondria and plasma membrane dual-targeted photodynamic tumor therapy. Without additional carrier, M-ChiP possessed high drug loading efficacy as well as the excellent ability of producing reactive oxygen species (ROS). Moreover, the dual-targeting property facilitated the effective subcellular localization of photosensitizer protoporphyrin IX (PpIX) to generate ROS in situ for enhanced photodynamic therapy (PDT). Notably, plasma membrane-targeted PDT would enhance the membrane permeability to improve the cellular delivery of M-ChiP, and even directly disrupt the cell membrane to induce cell necrosis. Additionally, mitochondria-targeted PDT would decrease mitochondrial membrane potential and significantly promote the cell apoptosis. Both in vitro and in vivo investigations indicated that this combinatorial PDT in mitochondria and plasma membrane could achieve the therapeutic effect maximization with reduced side effects. The single-agent self-delivery system with dual-targeting strategy was demonstrated to be a promising nanoplatform for synergistic tumor therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app