Add like
Add dislike
Add to saved papers

A microglial cell model for acyl-CoA oxidase 1 deficiency.

Acyl-CoA oxidase 1 (ACOX1) deficiency is a rare and severe peroxisomal leukodystrophy associated with a very long-chain fatty acid (VLCFA) β-oxidation defect. This neurodegenerative disease lacks relevant cell models to further decipher the pathomechanisms in order to identify novel therapeutic targets. Since peroxisomal defects in microglia appear to be a key component of peroxisomal leukodystrophies, we targeted the Acox1 gene in the murine microglial BV-2 cell line. Using CRISPR/Cas9 gene editing, we generated an Acox1-deficient cell line and validated the allelic mutations, which lead to the absence of ACOX1 protein and enzymatic activity. The activity of catalase, the enzyme degrading H2 O2 , was increased, likely in response to the alteration of redox homeostasis. The mutant cell line grew more slowly than control cells without obvious morphological changes. However, ultrastructural analysis revealed an increased number of peroxisomes and mitochondria associated with size reduction of mitochondria. Changes in the distribution of lipid droplets containing neutral lipids have been observed in mutant cells; lipid analysis revealed the accumulation of saturated and monounsaturated VLCFA. Besides, expression levels of genes encoding interleukin-1 beta and 6 (IL-1β and IL-6), as well as triggering receptor expressed on myeloid cells 2 (Trem2) were found modified in the mutant cells suggesting modification of microglial polarization and phagocytosis ability. In summary, this Acox1-deficient cell line presents the main biochemical characteristics of the human disease and will serve as a promising model to further investigate the consequences of a specific microglial peroxisomal β-oxidation defect on oxidative stress, inflammation and cellular functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app