Add like
Add dislike
Add to saved papers

Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages.

Bisphenol A (BPA) is primarily used in production of polycarbonate plastics and epoxy resins including plastic containers. BPA is an endocrine disruptor and supposes to induce asthma and cancer. However, so far only a few evidences have shown the BPA-induced toxic effect and its related mechanism in macrophages. BPA demonstrated cytotoxic effect on RAW264.7 macrophages in a concentration and time-dependent manner. BPA induces necrosis, apoptosis, and genotoxicity in a concentration-dependent manner. Phosphorylation of cytochrome C (cyto C) and p53 was due to mitochondrial disruption via BCL2 and BCL-XL downregulation and BAX, BID, and BAD upregulation. Both caspase-dependent, including caspase-9, caspase-3, and PARP-1 cleavage, and caspase-independent, such as nuclear translocation of AIF, pathways were activated by BPA. Furthermore, generation of reactive oxygen species (ROS) and reduction of antioxidative enzyme activities were induced by BPA. Parallel trends were observed in the effect of BPA on cytotoxicity, apoptosis, genotoxicity, p53 phosphorylation, BCL2 family expression exchange, caspase-dependent and independent apoptotic pathways, and ROS generation in RAW264.7 macrophages. Finally, BPA-exhibited cytotoxicity, apoptosis, and genotoxicity could be inhibited by N-acetylcysteine. These results indicated that the toxic effect of BPA was functioning via oxidative stress-associated mitochondrial apoptotic pathway in macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app