Add like
Add dislike
Add to saved papers

Role of Helicity in DNA Hairpin Folding Dynamics.

Physical Review Letters 2018 September 29
We study hairpin folding dynamics by means of extensive molecular dynamics simulations, with particular attention paid to the influence of helicity on the folding time. We find that the dynamical exponent α in the anomalous scaling n(t)∼t^{1/α} of the hairpin length n with time changes from 1.6 (≃1+ν, where ν is the Flory exponent) to 1.2 (≃2ν) in three dimensions, when duplex helicity is removed. The relation α=2ν in rotationless hairpin folding is further verified in two dimensions (ν=0.75) and for a ghost chain (ν=0.5). Our findings suggest that the folding dynamics in long helical chains is governed by the duplex dynamics, contrasting the earlier understanding based on the stem-flower picture of unpaired segments. We propose a scaling argument for α=1+ν in helical chains, assuming that duplex relaxation required for orientational positioning of the next pair of bases is the rate-limiting process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app