Add like
Add dislike
Add to saved papers

Distinctive structural motifs coordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes.

Protein Science 2018 October 13
The alpha/beta-hydrolases (ABH) are among the largest structural families of proteins that are found in nature. Although they vary in their sequence and function, the ABH enzymes use a similar acid-base-nucleophile catalytic mechanism to catalyze reactions on different substrates. Because ABH enzymes are biocatalysts with a wide range of potential applications, protein engineering has taken advantage of their catalytic versatility to develop enzymes with industrial applications. This study is a comprehensive analysis of 40 ABH enzyme families focusing on two identified substructures: the nucleophile zone and the oxyanion zone, which coordinate the catalytic nucleophile and the residues of the oxyanion hole, and independently reported as critical for the enzymatic activity. We also frequently observed an aromatic cluster near the nucleophile and oxyanion zones, and opposite the ligand-binding site. The nucleophile zone, the oxyanion zone and the residue cluster enriched in aromatic side chains comprise a three-dimensional structural organization that shapes the active site of ABH enzymes and plays an important role in the enzymatic function by structurally stabilizing the catalytic nucleophile and the residues of the oxyanion hole. The structural data support the notion that the aromatic cluster can participate in coordination of the catalytic histidine loop, and properly place the catalytic histidine next to the catalytic nucleophile. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app