Add like
Add dislike
Add to saved papers

Full-Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry.

Advanced Materials 2018 October 12
Since the advent of transformation optics and scattering cancelling technology, a plethora of unprecedented metamaterials, especially invisibility cloaks, have been successfully demonstrated in various communities, e.g., optics, acoustics, elastic mechanics, dc electric field, dc magnetic field, and thermotics. A long-held captivation is that transformation-optic metamaterials of anisotropic or noncentrosymmetric geometry (e.g., ellipsoids) commonly come along with parameter approximation/simplification or directional functions. Here, a synthetic paradigm with strictly full parameters and omnidirectionality is reported simultaneously to address this long-held issue for molding heat flow and experimentally demonstrate a series of noncentrosymmetric thermal metadevices. It changes the usual perception that transformation thermotic/dc/acoustic metamaterials are just a direct and simplified derivatives of the transformation-optic counterpart. Instead, the proposed methodology solves an intriguingly important and challenging problem that is not possibly achievable for transformation-optic metamaterials. The approach is rigorous, exact, robust, and yet elegantly facile, which may open a new avenue to manipulating the Laplacian and wave-dynamic fields in ways previously inconceivable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app