Add like
Add dislike
Add to saved papers

Algal toxicity of binary mixtures of zinc oxide nanoparticles and tetrabromobisphenol A: Roles of dissolved organic matters.

The present study investigated the impacts of dissolved organic matters (DOM) on joint toxicity involved in zinc oxide nanoparticles (ZnO NPs) and tetrabromobisphenol A (TBBPA) at relevant low-exposure concentrations (<1 mg/L). It was found that ZnO NPs in single and combined systems exhibited severe inhibition effects on a freshwater microalgae Scenedesmus obliquus. However, the presence of DOM slightly alleviated the growth inhibition toxicity induced by the binary mixtures of ZnO NPs and TBBPA. Ultrastructure analysis revealed that ZnO NPs caused structural damage to cells, including plasmolysis, membrane destruction, and the disruption of thylakoid in the chloroplast, regardless of the presence of coexisting substances. Oxidative stress biomarker quantitative analysis and in situ observations indicated that the massive accumulation of reactive oxygen species in the binary mixtures of ZnO NPs and TBBPA caused severe oxidative damage, but the presence of DOM significantly mitigated the damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app