Add like
Add dislike
Add to saved papers

NKL homeobox gene activities in B-cell development and lymphomas.

Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation. Several members of the NKL subclass are deregulated in T-cell progenitors and support leukemogenesis. We have recently described particular expression patterns of nine NKL homeobox genes in early hematopoiesis and T-cell development. Here, we screened NKL homeobox gene activities in normal B-cell development and extended the NKL-code to include this lymphoid lineage. Analysis of public expression profiling datasets revealed that HHEX and NKX6-3 were the only members differentially active in naïve B-cells, germinal center B-cells, plasma cells and memory B-cells. Subsequent examination of different types of B-cell malignancies showed both aberrant overexpression of NKL-code members and ectopic activation of subclass members physiologically silent in lymphopoiesis including BARX2, DLX1, EMX2, NKX2-1, NKX2-2 and NKX3-2. Based on these findings we performed detailed studies of the B-cell specific NKL homeobox gene NKX6-3 which showed enhanced activity in patient subsets of follicular lymphoma, mantle cell lymphoma and diffuse large B-cell lymphoma (DLBCL), and in three DLBCL cell lines to serve as in vitro models. While excluding genomic and chromosomal rearrangements at the locus of NKX6-3 (8p11) promoter studies demonstrated that B-cell factors MYB and PAX5 activated NKX6-3 transcription. Furthermore, aberrant BMP7/SMAD1-signalling and deregulated expression of chromatin complex components AUTS2 and PCGF5 promoted NKX6-3 activation. Finally, NKL homeobox genes HHEX, HLX, MSX1 and NKX6-3 were expressed in B-cell progenitors and generated a regulatory gene network in cell lines which we propose may provide physiological support for NKL-code formation in early B-cell development. Together, we identified an NKL-code in B-cell development whose violation may deregulate differentiation and promote malignant transformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app