Add like
Add dislike
Add to saved papers

Nuclear quantum effects in the direct ionization process of pure helium clusters: path-integral and ring-polymer molecular dynamics simulations on the diatomics-in-molecule potential energy surfaces.

The direct photoionization of pure helium clusters, Hen (n = 100, 200 and 300), and its subsequent short-time process have been studied by path integral molecular dynamics (PIMD) and ring-polymer molecular dynamics (RPMD) simulations that can effectively describe the nuclear quantum effects in large systems. The modified diatomics-in-molecule (DIM) model [Calvo et al., J. Chem. Phys., 2011, 135, 124308] has been used to describe the electronic structures of Hen + clusters. The PIMD simulations were able to reproduce the experimental ionization spectra having a broad and asymmetric nature, which can be ascribed to the inhomogeneity of the energy levels of He atoms in the inner and outer regions of the cluster. From the RPMD simulations, it is found that the ionized helium cluster in the higher excited state is followed by fast electronic state relaxation via nonadiabatic charge transfer including a small contribution of nuclear motions, and subsequently by slow relaxation of the cluster structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app