Add like
Add dislike
Add to saved papers

Intelligent HMI in Orthopedic Navigation.

The human-machine interface (HMI) is an essential part of image-guided orthopedic navigation systems. HMI provides a primary platform to merge surgically relevant pre- and intraoperative images from different modalities and 3D models including anatomical structures and implants to support surgical planning and navigation. With the various input-output techniques of HMI, surgeons can intuitively manipulate anatomical models generated from medical images and/or implant models for surgical planning. Furthermore, HMI recreates sight, sound, and touch feedback for the guidance of surgery operations which helps surgeons to sense more relevant information, e.g., anatomical structures and surrounding tissue, the mechanical axis of limbs, and even the mechanical properties of tissue. Thus, with the help of interactive HMI, precision operations, such as cutting, drilling, and implantation, can be performed more easily and safely.Classic HMI is based on 2D displays and standard input devices of computers. In contrast, modern visual reality (VR) and augmented reality (AR) techniques allow the showing more information for surgical navigation. Various attempts have been applied to image-guided orthopedic therapy. In order to realize rapid image-based modeling and to create effective interaction and feedback, intelligent algorithms have been developed. Intelligent algorithms can realize fast registration of image to image and image to patients, and the algorithms to compensate the visual offset in AR display have been investigated. In order to accomplish more effective human-computer interaction, various input methods and force sensing/force reflecting methods have been developed. This chapter reviews related human-machine interface techniques for image-guided orthopedic navigation, analyzes several examples of clinical applications, and discusses the trend of intelligent HMI in orthopedic navigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app