Add like
Add dislike
Add to saved papers

Targeted silencing of genes in polyploids: lessons learned from Brassica juncea-glucosinolate system.

Plant Cell Reports 2018 October 11
KEY MESSAGE: Intron-spliced hairpin RNAi construct targeting the exonic region of BjuMYB28 driven by the native promoter is the best suited strategy for developing viable low glucosinolate lines in polyploid Brassica juncea. Targeted silencing of specific homolog(s) of a multigene family in polyploids through RNA interference (RNAi) is a challenging effort. Indian oilseed mustard (Brassica juncea), a natural allotetraploid, is expected to have 4-6 copies of every Arabidopsis gene ortholog. In the current study, we have attempted to establish the best gene silencing system suitable for BjuMYB28, a transcription factor gene, with the objective of developing low seed glucosinolate lines in B. juncea. After comparing multiple combinations of BjuMYB28 gene homologs, promoters, target regions (exon and 3' UTR) and silencing strategies (RNAi and antisense), we suggest that the intron-spliced hairpin RNAi construct targeting the specific exonic region of the BjuMYB28 gene under the control of native promoter, whose peak activity synchronises with the highest glucosinolate accumulation phase of the plant, is the best suited strategy for developing viable low glucosinolate lines in polyploid B. juncea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app