Add like
Add dislike
Add to saved papers

Liquid chromatography-time-of-flight high-resolution mass spectrometry study and determination of the dansylated products of estrogens and their hydroxylated metabolites in water and wastewater.

A method combining liquid chromatography with a dual-probe ultraspray electrospray ionization (ESI) source and time-of-flight high-resolution mass spectrometry (LC-ESI-TOF/MS) was developed for the simultaneous determination of four steroidal sex hormones, estrone (E1), 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), and estriol (E3), as well as five of their hydroxylated metabolites, 2-hydroxyestrone (2-OHE1), 4-hydroxyestrone (4-OHE1), 16α-hydroxyestrone (16-OHE1), 2-hydroxyestradiol (2-OHE2), and 4-hydroxyestradiol (4-OHE2), in water samples in a short chromatographic run of 10 min. Derivatization of the analytes was optimized using dansyl chloride as the derivatizing agent. Under optimal positive ionization conditions, the following signals, which had not been previously reported, were observed (with theoretical values of m/z 377.1373 for 2- and 4-OHE1 and 378.1452 for 2- and 4-OHE2), corresponding to doubly derivatized catechol estrogens in the form of [M+2H]2+ . These mass spectrometric signals were more abundant than those reported previously for the [M+H]+ forms of these hydroxylated metabolites. Solid-phase extraction (SPE) with an octadecyl-endcapped sorbent was used to pretreat tap water and effluent from a wastewater treatment plant (WWTP) in Santiago, Chile. The method achieved the simple, fast, and sensitive measurement of nine estrogens with quantitative recoveries (higher than 85.4%). Detection and quantification limits were between 1 and 17 ng L-1 and between 3 and 58 ng L-1 , respectively, for all compounds in water. The estrogens E1 and E2 were found in WWTP effluent at concentrations of 7 ± 1 and 41 ± 1 ng L-1 , respectively, and EE2 was detected at a concentration below the limit of quantitation. This study shows that the proposed method is suitable for the accurate, rapid, and selective determination of all these analytes at trace levels. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app