Add like
Add dislike
Add to saved papers

The wheat Lr67 gene of the Sugar Transport Protein family confers multipathogen resistance in barley.

Plant Physiology 2018 October 11
Fungal pathogens are a major constraint to global crop production; hence, plant genes encoding pathogen resistance are important tools for combating disease. A few resistance genes identified to date provide partial, durable resistance to multiple pathogens and the wheat (Triticum aestivum) Lr67 hexose transporter variant (Lr67res) fits into this category. Two amino acids differ between the wild-type and resistant alleles - G144R and V387L. Exome sequence data from 267 barley (Hordeum vulgare) landraces and wild accessions was screened and neither of the Lr67res mutations was detected. The barley orthologue of Lr67, HvSTP13, was functionally characterised in yeast as a high affinity hexose transporter. The G144R mutation was introduced into HvSTP13 and abolished glucose uptake, whereas the V387L mutation reduced glucose uptake by ~50%. Glucose transport by HvSTP13 heterologously expressed in yeast was reduced when co-expressed with Lr67res. Stable transgenic Lr67res barley lines exhibited seedling resistance to the barley-specific pathogens Puccinia hordei and Blumeria graminis f. sp. hordei, which cause leaf rust and powdery mildew, respectively. Barley plants expressing Lr67res exhibited early senescence and higher pathogenesis-related (PR) gene expression. Unlike previous observations implicating flavonoids in the resistance of transgenic sorghum (Sorghum bicolor) expressing Lr34res, another wheat multipathogen resistance gene, barley flavonoids are unlikely to have a role in Lr67res-mediated resistance. Similar to observations made in yeast, Lr67res reduced glucose uptake in planta. These results confirm that the pathway by which Lr67res confers resistance to fungal pathogens is conserved between wheat and barley.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app