Add like
Add dislike
Add to saved papers

Antiallodynic Effects of Intrathecal Areca Nut for Spinal Nerve-Ligated and Chemotherapy-Induced Neuropathic Pain in Rats.

This study examined the effects of intrathecal areca nut on spinal nerve-ligated and chemotherapy-induced neuropathic pain (NP), and investigated the relevance of spinal 5-hydroxytryptamine (5-HT) and α2-adrenergic receptors to those effects. For drug administration, intrathecal catheters were inserted into the subarachnoid space of male Sprague-Dawley rats. NP was induced either by spinal nerve ligation (left spinal nerves L5 and L6) or by chemotherapeutic injection (intraperitoneal cisplatin, 2 mg/kg/day, once daily for 4 days). Paw withdrawal thresholds (PWT) were mechanically assessed using von Frey filaments. The involvement of 5-HT and α2-adrenergic receptors in antiallodynia was determined using antagonists with the following receptor specificities: nonselective 5-HT (dihydroergocristine), 5-HT7 (SB269970), nonselective α2-adrenoceptor (yohimbine), α-2A (BRL 44408), α-2B (ARC 239), and α-2C (JP 1302). Intrathecal areca nut significantly increased the PWT in both spinal nerve-ligated and chemotherapy-induced NP (‡ p < 0.001). Intrathecal dihydroergocristine, SB269970, yohimbine, BRL 44408, ARC 239, and JP 1302 significantly reversed the antiallodynic effects of areca nut in both NP states (‡ p < 0.001). Collectively, intrathecal areca nut suppressed mechanical allodynia induced by spinal nerve ligation and cisplatin injection. Furthermore, spinal 5-HT7 receptor and α2A, α2B, and α2C-adrenoceptors contributed to the antiallodynic effects of areca nut.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app