Add like
Add dislike
Add to saved papers

Molecular Sieving of Ethane from Ethylene through the Molecular Cross-Section Size Differentiation in Gallate-based Metal-Organic Frameworks.

Angewandte Chemie 2018 October 11
Purification of C2 H4 from an C2 H4 /C2 H6 mixture, one of the most important while challenging industrial separation processes, is mainly through energy-intensive cryogenic distillation. Now a family of gallate-based metal-organic framework (MOF) materials is presented, M-gallate (M=Ni, Mg, Co), featuring 3D interconnected zigzag channels, the aperture sizes of which (3.47-3.69 Å) are ideally suitable for molecular sieving of ethylene (3.28×4.18×4.84 Å3 ) and ethane (3.81×4.08×4.82 Å3 ) through molecular cross-section size differentiation. Co-gallate shows an unprecedented IAST selectivity of 52 for C2 H4 over C2 H6 with a C2 H4 uptake of 3.37 mmol g-1 at 298 K and 1 bar, outperforming the state-of-the-art MOF material NOTT-300. Direct breakthrough experiments with equimolar C2 H4 /C2 H6 mixtures confirmed that M-gallate is highly selective for ethylene. The adsorption structure and mechanism of ethylene in the M-gallate was further studied through neutron diffraction experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app